/Armors Labs

Oh ! Finance

Smart Contract Audit

0X202106090006 &rmvrs I_G bS

. Oh ! Finance Audit Summary
. Oh ! Finance Audit
» Document information
- Audit results
- Audited target file
» Vulnerability analysis

= Vulnerability distribution

« Summary of audit results

- Contract file

= Analysis of audit results
- Re-Entrancy
=« Arithmetic Over/Under Flows
« Unexpected Blockchain Currency
« Delegatecall
« Default Visibilities
= Entropy lllusion
« External Contract’Referencing
» Unsolved TOPO cemments
- Short Addréss/Rarameter Attack
« Unchecked CALL"Return Values
« Race“Conditions /Front Running
« Denial Of, Seryice (DOS)
« Block TimeStamp Manipulation
« Constructors with Care
- Unintialised Storage Pointers
« Floating Points and Numerical Precision
« tx.origin Authentication
- Permission restrictions

1/20

/Armors Labs

Oh | Finance Audit Summary

Project name : Oh ! Finance Contract

Project address: https://oh.finance

Code URL : https://github.com/OhFinance/oh-contracts
Commit : db8eda7caf4e7076d9c23ad633ba57d27d4b5a03
Project target : Oh ! Finance Contract Audit

Blockchain : Ethereum

Test result: PASSED

Audit Info

Audit NO : 0X202106090006

Audit Team : Armors Labs

Audit Proofreading: https://armors.io/#project-cases

Oh ! Finance Audit

The Oh ! Finance team asked us to review and audit their Oh'! Finance contract. We looked at the code and now
publish our results.

Here is our assessment and recommendations; in order of importance.

Document information

Name Auditor Version Date

Oh ! Finance Audit Rock, Sophia, Rushairer, Rico, David, Alice 1.00 2021-06-09

Audit results
Note that: This audit includes OhToken.sol file and OhTimelLock.sol file.

Note that as of the date of publishing, the above review reflects the current understanding of known security patterns
as they relate to the Oh ! Finance contract. The above should not be construed as investment advice.

Based on the widely recognized security status of the current underlying blockchain and smart contract, this audit
reportis valid for 3 months from the date of output.

(Statement: Armors Labs reports only on facts that have occurred or existed before this report is issued and assumes
corresponding responsibilities. Armors Labs is not able to determine the security of its smart contracts and is not
responsible for any subsequent or existing facts after this report is issued. The security audit analysis and other
content of this report are only based on the documents and information provided by the information provider to
Armors Labs at the time of issuance of this report (" information provided " for short). Armors Labs postulates that the

2/20

/Armors Labs

information provided is not missing, tampered, deleted or hidden. If the information provided is missing, tampered,
deleted, hidden or reflected in a way that is not consistent with the actual situation, Armors Labs shall not be
responsible for the losses and adverse effects caused.)

Audited target file

file md>5
IOhToken.sol ~ 631442a69eeb296e634a0cOce7el6a3l
[libraries/TransferHelper.sol 2895a3¢9122539f2d05075f6c90554f3
IOhTimelock.sol 240c71fed31laa28adfefe63332dal0e9c
Uregistry/OhSubscriber.sol 8c4bfd7808b919ch7a0a8eal830f2a4b
Uregistry/OhRegistry.sol 038fc6456eb93bc93b660743c9395cab
Jinterfaces/ISubscriber.sol 49ab2f1989883f4fe22a5cde72ad173b
Jinterfaces/IRegistry.sol 05673fdeea05bf3162bf4ch67d471dee
Jinterfaces/ITimelock.sol f5f88105d5716bf82cdd3d635d09d702

Jinterfaces/IToken.sol 8d3da343072234b9ba5bf5f10e122¢ch5
Vulnerability analysis

Vulnerability distribution

vulnerability level number

Critical severity 0
High severity 0
Medium severity 0
Low severity 0

Summary of audit results

Vulnerability status
Re-Entrancy safe
Arithmetic Over/Under Flows safe
Unexpected Blockchain Currency safe
Delegatecall safe
Default Visibilities safe
Entropy Illusion safe
External Contract Referencing safe

3/20

0X202106090006

/Armors Labs

Vulnerability status

Short Address/Parameter Attack safe
Unchecked CALL Return Values safe
Race Conditions / Front Running safe
Denial Of Service (DOS) safe
Block Timestamp Manipulation safe
Constructors with Care safe
Unintialised Storage Pointers safe

Floating Points and Numerical Precision safe

tx.origin Authentication safe

Permission restrictions safe

Contract file

// SPDX-License-Identifier: MIT

pragma

import
import
import
import

solidity 0.7.6;

{ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.s0l";
{SafeMath} from "@openzeppelin/contracts/math/SafeMath.sol";
{IToken} from "./interfaces/IToken.sol";

{OhSubscriber} from "./registry/OhSubscriber.sol";

/// @title Oh! Finance Token

/// @notice Protocol Governa#ice angh RrofIt-Share ERC-20 Token

contract OhToken is ERC20("Oh! Finance", "OH"), OhSubscriber, IToken {
using SafeMath for uint256;

/// @notice A checkpoint fo® magking number of votes from a given block
struct Checkpoint {

uint32 fromBlock;
uint256 votes;

/// @notice The max token supply, minted on initialization. 100m tokens.
uint256 public constant MAX_SUPPLY = 100000000e18;

/// @notice The EIP-712 typehash for the delegation struct used by the contract
bytes32 public constant DELEGATION_TYPEHASH =

keccak256("Delegation(address delegator,address delegatee,uint256 nonce,uint256 deadline)");

/// @notice the EIP-712 typehash for approving token transfers via signature
bytes32 public constant PERMIT_TYPEHASH =

keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)

/// @notice The EIP-712 typehash for the contract's domain
bytes32 public constant DOMAIN_TYPEHASH =

keccak256("EIP712Domain(string name, string version,uint256 chainId, address verifyingContract)

/// @notice The EIP-712 typehash used for replay protection, set at deployment
// solhint-disable-next-line
bytes32 public immutable DOMAIN_SEPARATOR;

4/20

/// @notice Delegate votes from 'msg.sender to ‘delegatee’
mapping(address => address) public delegates;

/// @notice A record of votes checkpoints for each account, by index
mapping(address => mapping(uint32 => Checkpoint)) public checkpoints;

/// @notice A record of states for signing / validating signatures
mapping(address => uint256) public nonces;

/// @notice The number of checkpoints for each account
mapping(address => uint32) public numCheckpoints;

/// @notice An event thats emitted when an account changes its delegate

/Armors Labs

event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed to

/// @notice An event thats emitted when a delegate account's vote balance changes
event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance)

constructor(address registry_) OhSubscriber(registry_) {
DOMAIN_SEPARATOR = keccak256(

abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name())), keccak256(bytes("1")), getChainId()

)i

_mint(msg.sender, MAX_SUPPLY);

/// @notice Delegate votes from “msg.sender to ‘délegate&y

/// @param delegatee The address to delegate vog€s to

function delegate(address delegatee) external override {
return _delegate(msg.sender, delegatee);

/// @notice Delegates votes from ‘deflegatgf” “to Jdeleggatee”
/// @param delegator the address #01dinggtokens
/// @param delegatee The addres§ to delegate vop€s to
/// @param deadline The timegat whi€hytomeXpire the signature
/// @param v The recovery #yte offf the SEgnature
/// @param r Half of thefECDSAg@sIgnhaturegpair
/// @param s Half of ghe £CDSANsignatuse pair
function delegateBySig(
address delegator,
address delegatee,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external override {
// solhint-disable-next-line
require(block.timestamp <= deadline, "Delegate: Invalid Expiration");
require(delegator != address(0), "Delegate: Invalid Delegator");

uint256 currentValidNonce = nonces[delegator];
bytes32 digest =
keccak256 (
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR,

keccak256(abi.encode (DELEGATION_TYPEHASH, delegator, delegatee, currentValidNonce

)i

require(delegator == ecrecover(digest, v, r, s), "Delegate: Invalid Signature");

nonces[delegator] = currentValidNonce.add(1);
return _delegate(delegator, delegatee);

5/20

0X202106090006

/Armors Labs

/// @dev implements the permit function per EIP-712
/// @param owner the owner of the funds
/// @param spender the spender
/// @param value the amount
/// @param deadline the deadline timestamp, type(uint256).max for max deadline
/// @param v the recovery byte of the signature
/// @param r half of the ECDSA signature pair
/// @param s half of the ECDSA signature pair
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external override {
require(block.timestamp <= deadline, "Permit: Invalid Deadline");
require(owner != address(0), "Permit: Invalid Owner");

uint256 currentValidNonce = nonces[owner];
bytes32 digest =
keccak256 (
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR,
keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, currentValidNonce, d

)i

require(owner == ecrecover(digest, v; r, s), "Permit: Invalid Signature");
nonces[owner] = currentValidNonce.add(1);
return _approve(owner, spender, value);

/// @notice Gets the currentgvotes palanee” foy” "account’

/// @param account The addfess tofget Vetesfbalance

/// @return The number of curr@éntyvoteés fior "account’

function getCurrentVotes(address account) external view override returns (uint256) {
uint32 nCheckpoints = numCheckpoints[account];
return nCheckpoints > @ ? checkpoints[account][nCheckpoints - 1].votes : 0;

/// @notice Determine the ‘Prior number of votes for an account as of a block number

/// @dev Block number must be a finalized block or else this function will revert to prevent misi

/// @param account The address of the account to check

/// @param blockNumber The block number to get the vote balance at

/// @return The number of votes the account had as of the given block

function getPriorVotes(address account, uint256 blockNumber) external view override returns (uint
require(blockNumber < block.number, "GetPriorVotes: Invalid Block");

uint32 nCheckpoints = numCheckpoints[account];
if (nCheckpoints == 0) {
return 0;

// First check most recent balance
if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
return checkpoints[account][nCheckpoints - 1].votes;

// Next check implicit zero balance
if (checkpoints[account][0].fromBlock > blockNumber) {
return 0;

6/20

/Armors Labs

uint32 lower = 0;
uint32 upper = nCheckpoints - 1;
while (upper > lower) {
uint32 center = upper - (upper - lower) / 2;
Checkpoint memory cp = checkpoints[account][center];
if (cp.fromBlock == blockNumber) {
return cp.votes;
} else if (cp.fromBlock < blockNumber) {
lower = center;
} else {
upper = center - 1;

}

return checkpoints[account][lower].votes;

function burn(uint256 amount) public override {
_burn(msg.sender, amount);

function mint(address recipient, uint256 amount) public override onlyGovernance {
_mint(recipient, amount);

function _burn(address from, uint256 amount) internal override {
super._burn(from, amount);
_moveDelegates(delegates[from], address(Q), amount);

function _mint(address to, uint256 amount) internal override {
require(totalSupply().add(amount) <= MAX_SUPPLY, "Token: Max Supply Exceeded");
super._mint(to, amount);
_moveDelegates(address(0), delegates[to], amount);

function _transfer(
address from,
address to,
uint256 amount
) internal override {
super._transfer(from, to, amount);
_moveDelegates(delegates[from], delegates[to], amount);

function _delegate(address delegator, address delegatee) internal {
address currentDelegate = delegates[delegator];
uint256 delegatorBalance = balanceOf(delegator);
delegates[delegator] = delegatee;

emit DelegateChanged(delegator, currentDelegate, delegatee);

_moveDelegates(currentDelegate, delegatee, delegatorBalance);

function _moveDelegates(
address srcRep,
address dstRep,
uint256 amount

7120

/Armors Labs

) internal {
if (srcRep != dstRep && amount > 0) {
if (srcRep != address(0)) {

uint32 srcRepNum = numCheckpoints[srcRep];

uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
uint256 srcRepNew = srcRepOld.sub(amount);

_writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);

if (dstRep != address(0)) {

uint32 dstRepNum = numCheckpoints[dstRep];

uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
uint256 dstRepNew = dstRepOld.add(amount);

_writeCheckpoint(dstRep, dstRepNum, dstRep0Old, dstRepNew);

function _writeCheckpoint(
address delegatee,
uint32 nCheckpoints,
uint256 oldvotes,
uint256 newVotes
) internal {
uint32 blockNumber = uint32(block.number);

fo) bloel at
if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
checkpoints[delegatee] [nCheckpoints - 1].votes = newVotes;
} else {
tf updat L€
checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
numCheckpoints[delegatee] = nCheckpoints + 1;

}
emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
}
function getChainId() internal pure returns (uint256 chainId) {
1b.J t [0
assembly {
chainId := chainid()
}

pragma solidity 0.7.6;

interface IToken {
function delegate(address delegatee) external;

function delegateBySig(
address delegator,
address delegatee,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s

) external;

function permit(
address owner,

8/20

/Armors Labs

address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
function burn(uint256 amount) external;
function mint(address recipient, uint256 amount) external;

function getCurrentVotes(address account) external view returns (uint256);

function getPriorVotes(address account, uint256 blockNumber) external view returns (uint256);

// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
interface ITimelock {}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;

interface ISubscriber {
function registry() external view returns (address);

function governance() external view returns (address);

function manager () external view returns (address);

// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;

interface IRegistry {
function governance() external.view returns (address);

function manager() external view returns (address);

// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.s0l";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/SafeERC20.s0l";

library TransferHelper {
using SafeERC20 for IERC20;

// safely transfer tokens without underflowing
function safeTokenTransfer (

address recipient,

address token,

uint256 amount
) internal returns (uint256) {

if (amount == 0) {

return 0;

uint256 balance = IERC20(token).balanceOf(address(this));

9/20

0X202106090006 &I"mors LCI bS

if (balance < amount) {
IERC20(token).safeTransfer(recipient, balance);
return balance;

} else {
IERC20(token).safeTransfer(recipient, amount);
return amount;

// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.s0l";

import {SafeMath} from "@openzeppelin/contracts/math/SafeMath.sol";

import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {TransferHelper} from "./libraries/TransferHelper.sol";

import {ITimelock} from "./interfaces/ITimelock.sol";

import {IToken} from "./interfaces/IToken.sol";

import {OhSubscriber} from "./registry/0OhSubscriber.sol";

/// @title Oh! Finance Token Timelock
/// @notice Contract to manage linear token vesting over a gi¥en time peridiod
/// @notice Users accrue vested tokens as soon as the timelfock stdrtsm every second
contract OhTimelock is ReentrancyGuard, OhSubscriber, ITimelock {
using SafeMath for uint256;

/// @notice The total vested balance of tokens a, user can jlaim
mapping(address => uint256) public balances;

/// @notice The total amount of tokensfa useg’ has alreafly claimed
mapping(address => uint256) public claimed;

/// @notice The Oh! Finance Tokén addréss
address public token;

/// @notice The UNIX tim€stampgthat the gimelock starts at
uint256 public timelockStart;

/// @notice The length in $€condsgof the timelock
uint256 public timelockLength;

/// @notice Emitted when a%user is added to the timelock
event Add(address indexed user, uint256 amount);

/// @notice Emitted every time a user claims tokens
event Claim(address indexed user, uint256 amount);

/// @notice Timelock constructor
/// @param registry The address of the Registry
/// @param _token The address of the Oh! Finance Token
/// @param _timelockDelay Seconds to delay the timelock from starting
/// @param _timelockLength The length of the timelock in seconds
constructor(
address registry._,
address _token,
uint256 _timelockDelay,
uint256 _timelockLength
) OhSubscriber(registry_) {
token = _token;
timelockStart = block.timestamp + _timelockDelay;
timelockLength = _timelockLength;

10/20

0X202106090006 &I"mors LG bS

/// @notice Add a set of users to the vesting contract with a set amount

/// @dev Only callable by Governance, delegates token votes to msg.sender until they are claimed

/// @param users The array of users to be added to the vesting contract

/// @param amounts The array of amounts of tokens to add to each users vesting schedule

function add(address[] memory users, uint256[] memory amounts) external onlyGovernance {
require(users.length == amounts.length, "Timelock: Arrity mismatch");

// find total, add to user balances
uint256 totalAmount = 0;
uint256 length = users.length;
for (uint256 i = 0; i < length; i++) {
// get user and amount
address user = users[i];
uint256 amount = amounts[i];

// update state and total, emit add
balances[user] = amount;

totalAmount = totalAmount.add(amount);
emit Add(user, amount);

// transfer from msg.sender, delegate votes back to msg.sender
IERC20(token).transferFrom(msg.sender, address(this), totalAmount);

/// @notice Claim all available tokens for the msg.sendér, if fany
/// @dev Reentrancy guard to prevent double claims
function claim() external nonReentrant {
require(block.timestamp > timelockStart, "Timelock: Lock not- started");

// check for available claims

address user = msg.sender;

uint256 amount = claimable(user);
require(amount > 0, "Timelock: No Tokens™);

// update user claimed variébles
claimed[user] = claimed[user].add(amount);

// transfer to user
TransferHelper.safeTokenTransfer (user, token, amount);
emit Claim(user, amount);

/// @notice Available tokensgavailable for a user to claim
/// @dev Available = ((Bal@hces[user] * Time_Passed) / Total Time) - Claimed[user]
/// @param user The user address to check
/// @return amount The amount of tokens available to claim
function claimable(address user) public view returns (uint256 amount) {
// save state variable to memory
uint256 userClaimed = claimed[user];

// if timelock hasn't started yet

if (block.timestamp < timelockStart) {
// return entire balance
amount = balances[user];

}

// else if timelock has expired

else if (block.timestamp > timelockStart.add(timelockLength)) {
// return total remaining balance
amount = balances[user].sub(userClaimed);

}

// else we are currently in the vesting phase

else {
// find the time passed since timelock start
uint256 delta = block.timestamp.sub(timelockStart);

11/20

/Armors Labs

// find the total vested amount of tokens available
uint256 totalVested = balances[user].mul(delta).div(timelockLength);

// return vested - claimed
amount = totalVested.sub(userClaimed);

// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;

import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {IRegistry} from "../interfaces/IRegistry.sol";

/// @title Oh! Finance Registry
/// @dev Contract that contains references to the all core contracts for Oh! Finance
/// @dev Ideally, we should never need to replace this contract. Only update references.
contract OhRegistry is IRegistry {

using Address for address;

/// @notice address of governance contract
address public override governance;

/// @notice address of the management contract
address public override manager;

event GovernanceUpdated(address indexed oldGovernance, address indexed newGovernance);
event ManagerUpdated(address indexed oldManager, address indexed newManager);

modifier onlyGovernance {
require(msg.sender == governance, '"Registry: Only Governance");

=0

constructor() {
governance = msg.sender;

/// @notice Sets thé Govewnanee,addpéss

/// @param _governahce theWhew goy€rnance address

/// @dev Only Governahge cam cadl this function

function setGovernance(address _governance) external onlyGovernance {
require(_governance.isContract(), "Registry: Invalid Governance");
emit GovernanceUpdated(governance, _governance);
governance = _governance;

/// @notice Sets the Manager address

/// @param _manager the new manager address

/// @dev Only Governance can call this function

function setManager(address _manager) external onlyGovernance {
require(_manager.isContract(), "Registry: Invalid Manager");
emit ManagerUpdated(manager, _manager);
manager = _manager;

// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
import {Address} from "@openzeppelin/contracts/utils/Address.sol";

import {ISubscriber} from "../interfaces/ISubscriber.sol";
import {IRegistry} from "../interfaces/IRegistry.sol";

12/20

0X202106090006

/Armors Labs

/// @title Oh! Finance Subscriber
/// @notice Base Oh! Finance contract used to control access throughout the protocol
abstract contract OhSubscriber is ISubscriber {

address internal _registry;

/// @notice Only allow authorized addresses (governance or manager) to execute a function
modifier onlyAuthorized {
require(msg.sender == governance() || msg.sender == manager(), "Subscriber: Only Authorized")

=0

/// @notice Only allow the governance address to execute a function
modifier onlyGovernance {
require(msg.sender == governance(), "Subscriber: Only Governance");

—r

/// @notice Construct contract with the Registry

/// @param registry_ The address of the Registry

constructor(address registry_) {
require(Address.isContract(registry_), "Subscriber: Invalid Registry");
registry = registry;

/// @notice Get the Governance address

/// @return The current Governance address

function governance() public view override returns (address) {
return IRegistry(registry()).governance();

/// @notice Get the Manager address

/// @return The current Manager addres§é

function manager () public view override returns (address) {
return IRegistry(registry()).manager();

/// @notice Get the Registfy addpess

/// @return The currentgRegistgyaddress

function registry() public view override returns (address) {
return _registry;

/// @notice Set the Reglstrygfor the contract. Only callable by Governance.

/// @param registry The néw registry

/// @dev Requires sender to be Governance of the new Registry to avoid bricking.

/// @dev Ideally should not be used

function setRegistry(address registry_) external onlyGovernance {
require(Address.isContract(registry_), "Subscriber: Invalid Registry");

registry = registry;
require(msg.sender == governance(), "Subscriber: Bad Governance");

"name": "@ohfinance/contracts",

"version": "1.0.0",

"description": "Oh! Finance Ethereum Smart Contracts",
"homepage": "https://oh.finance",

"repository": "https://github.com/OhFinance/contracts",
"author": "OhFinance <hello@oh.finance>",

"license": "MIT",

"types": "types/index.ts",

"files": [

13/20

0X202106090006

1,

Ilabill

4
"artifacts",
"contracts",
Iltypesll

"scripts": {

3

"bump:minor": "yarn version --minor",

"bump:major": "yarn version --major",

"clean": "hardhat clean",

"release": "yarn publish",

"lint": "yarn prettier && solhint -c .solhint.json contracts/**/*.sol",
"build": "hardhat compile && tsc",

"compile": "hardhat compile",

"docs:build": "rm -rf docs && yarn run hardhat docgen",

"docs:serve": "serve -s docs",

"dev": "hardhat node --watch",

"test": "hardhat test",

"test:gas": "cross-env REPORT_GAS=1 hardhat test",

"test:fast": "cross-env TS_NODE_TRANSPILE_ONLY=1 hardhat test",
"rinkeby:deploy": "hardhat --network rinkeby deploy",

"rinkeby:run": "hardhat --network rinkeby run",
"rinkeby:sourcify": "hardhat --network rinkeby sourcify",
"rinkeby:verify": "hardhat --network rinkeby etherscan-verify'
"mainnet:deploy": "hardhat --network mainnet deploy",
"mainnet:run": "hardhat --network mainnet run",
"mainnet:sourcify": "hardhat --network mainnet sourcify",
"mainnet:verify": "hardhat --network mainnet etherscan-verify!

"devDependencies": {

"@digix/doxity": "n0.5.2",
"@ethereum-waffle/chai": "A3.2.2",
"@nomiclabs/hardhat-ethers": "npm:hardhat-deploy-ethers",

"@nomiclabs/hardhat-etherscan": "A2.1.2",
"@nomiclabs/hardhat-waffle": "A2.0.1",
"@openzeppelin/contracts": "3.4.1",

"@openzeppelin/contracts-upgradeable": "3.4.1",
"@studydefi/money-legos": "A2.4.1",
"@typechain/ethers-v5": "A7.0.0",
"@typechain/hardhat": "A2.0.1";
"@types/chai": "A4.2.214",

"@types/mocha": "A8:2.0",

"@types/node": "A14.14.22",
"@uniswap/v2-core": "A1.0.1%,
"@uniswap/v2-periphery":."A1,1.0-beta.0o",
"chai": "n4.2.0",

"cross-env": "A7.0.3",

"dotenv": "A8.2.0",

"ethereum-waffle": "A3.3.0",

"ethers": "A5.3.0",

"hardhat": "A2.0.6",

"hardhat-abi-exporter": "A2.0.7",
"hardhat-deploy": "70.7.10",
"hardhat-docgen": "A1.1.1",
"hardhat-gas-reporter": "A1.0.4",
"hardhat-spdx-license-identifier": "/22.0.3",
"hardhat -typechain": "70.3.4",

"prettier": "A2.2.1",
"prettier-plugin-solidity": "A1.0.0-beta.9",
Tsele™s "0.7.6",

"ts-generator": "n0.1.1",

"ts-node": "n9.1.1",

"tsconfig-paths": "A3.9.0",

"typechain": "A5.0.0",

"typescript": "n4.1.3"

14/20

/Armors Labs

/Armors Labs

Analysis of audit results

Re-Entrancy

+ Description:
One of the features of smart contracts is the ability to call and utilise code of other external contracts. Contracts
also typically handle Blockchain Currency, and as such often send Blockchain Currency to various external user
addresses. The operation of calling external contracts, or sending Blockchain Currency to an address, requires
the contract to submit an external call. These external calls can be hijacked by attackers whereby they force the
contract to execute further code (i.e. through a fallback function) , including calls back into itself. Thus the code
execution "re-enters" the contract. Attacks of this kind were used in the infamous DAO hack.

* Detection results:

PASSED!

* Security suggestion:
no.

Arithmetic Over/Under Flows

« Description:
The Virtual Machine (EVM) specifies fixed-size data types for integers. This means that an integer variable, only
has a certain range of numbers it can represent. A uint8 for example, can only store numbers in the range
[0,255]. Trying to store 256 into a uint8 will resultin 0. If care is not taken, variables in Solidity can be exploited if
user input is unchecked and calculations are performed which resultin numbers that lie outside the range of the
data type that stores them.

o Detection results:

PASSED!

« Security suggestion:
no.

Unexpected Blockchain Currency

« Description:
Typically when Blockchain Currency is sent to a contract, it must execute either the fallback function, or another
function described in the contract. There are two exceptions to this, where Blockchain Currency can existin a
contract without having executed any code. Contracts which rely on code execution for every Blockchain
Currency sent to the contract can be vulnerable to attacks where Blockchain Currency is forcibly sentto a
contract.

* Detection results:

PASSED!

« Security suggestion: no.

15/20

/Armors Labs

Delegatecall

+ Description:
The CALL and DELEGATECALL opcodes are useful in allowing developers to modularise their code. Standard
external message calls to contracts are handled by the CALL opcode whereby code is run in the context of the
external contract/function. The DELEGATECALL opcode is identical to the standard message call, except that
the code executed at the targeted address is run in the context of the calling contract along with the fact that
msg.sender and msg.value remain unchanged. This feature enables the implementation of libraries whereby
developers can create reusable code for future contracts.

+ Detection results:

PASSED'!

« Security suggestion: no.

Default Visibilities

« Description:
Functions in Solidity have visibility specifiers which dictate how functions-are allowed to be called. The visibility
determines whBlockchain Currency a function can be called externally.by users, by other derived contracts, only
internally or only externally. There are four visibility specifiers, which are described in detail in the Solidity Docs.
Functions default to public allowing users to call them externally. Incorrect use of visibility specifiers can lead to
some devestating vulernabilities in smart contracts as will be discussed in this section.

+ Detection results:

PASSED!

* Security suggestion:
no.

Entropy lllusion

« Description:
All transactions on the blockchain are deterministic state transition operations. Meaning that every transaction
modifies the global state of the ecosystem and it does so in a calculable way with no uncertainty. This ultimately
means that inside the blockchain ecosystem there is no source of entropy or randomness. There is no rand()
function in Solidity. Achieving decentralised entropy (randomness) is a well established problem and many
ideas have been proposed to address this (see for example, RandDAO or using a chain of Hashes as described
by Vitalik in this post).

« Detection results:

PASSED'!

* Security suggestion:
no.

External Contract Referencing

+ Description:
One of the benefits of the global computer is the ability to re-use code and interact with contracts already

16/20

/Armors Labs

deployed on the network. As a result, a large number of contracts reference external contracts and in general
operation use external message calls to interact with these contracts. These external message calls can mask
malicious actors intentions in some non-obvious ways, which we will discuss.

o Detection results:

PASSED!

« Security suggestion:
no.

Unsolved TODO comments

« Description:
Check for Unsolved TODO comments
« Detection results:

PASSED!

« Security suggestion:
no.

Short Address/Parameter Attack

« Description:
This attack is not specifically performed on Solidity contracts themselves but on third party applications that may
interact with them. | add this attack for completeness and to be aware of how parameters can be manipulated in
contracts.

* Detection results:

PASSED!

* Security suggestion:
no.

Unchecked CALL Return Values

+ Description:
There a number of ways of performing external calls in solidity. Sending Blockchain Currency to external
accounts is commonly performed via the transfer() method. However, the send() function can also be used and,
for more versatile external calls, the CALL opcode can be directly employed in solidity. The call() and send()
functions return a boolean indicating if the call succeeded or failed. Thus these functions have a simple caveat,
in that the transaction that executes these functions will not revert if the external call (intialised by call() or send())
fails, rather the call() or send() will simply return false. A common pitfall arises when the return value is not
checked, rather the developer expects a revert to occur.

* Detection results:

PASSED'!

* Security suggestion:
no.

17/20

/Armors Labs

Race Conditions |/ Front Running

« Description:
The combination of external calls to other contracts and the multi-user nature of the underlying blockchain gives
rise to a variety of potential Solidity pitfalls whereby users race code execution to obtain unexpected states. Re-
Entrancy is one example of such a race condition. In this section we will talk more generally about different kinds
of race conditions that can occur on the blockchain. There is a variety of good posts on this subject, a few are:
Wiki - Safety, DASP - Front-Running and the Consensus - Smart Contract Best Practices.

+ Detection results:

PASSED!

¢ Security suggestion:
no.

Denial Of Service (DOS)

+ Description:
This category is very broad, but fundamentally consists of attacks where users can leave the contract inoperable
for a small period of time, or in some cases, permanently. This.can trap Blockchain Currency in these contracts
forever, as was the case with the Second Parity MultiSig hack

+ Detection results:

PASSED!

* Security suggestion:
no.

Block Timestamp Manipulation

« Description:
Block timestamps have historically been used for a variety of applications, such as entropy for random numbers
(see the Entropy lllusion section for further details), locking funds for periods of time and various state-changing
conditional statements that are time-dependent. Miner's have the ability to adjust timestamps slightly which can
prove to be quite dangerous if block timestamps are used incorrectly in smart contracts.

* Detection results:

PASSED'!

* Security suggestion:
no.

Constructors with Care

+ Description:
Constructors are special functions which often perform critical, privileged tasks when initialising contracts.
Before solidity v0.4.22 constructors were defined as functions that had the same name as the contract that
contained them. Thus, when a contract name gets changed in development, if the constructor name isn't
changed, it becomes a normal, callable function. As you can imagine, this can (and has) lead to some interesting
contract hacks.

18/20

/Armors Labs

« Detection results:

PASSED'!

* Security suggestion:
no.

Unintialised Storage Pointers

+ Description:
The EVM stores data either as storage or as memory. Understanding exactly how this is done and the default
types for local variables of functions is highly recommended when developing contracts. This is because itis
possible to produce vulnerable contracts by inappropriately intialising variables.

+ Detection results:

PASSED!

* Security suggestion:
no.

Floating Points and Numerical Precision

+ Description:
As of this writing (Solidity v0.4.24), fixed point or floating point numbers are not supported. This means that
floating point representations must be made with the integer typesin Solidity. This can lead to
errors/vulnerabilities if not implemented correctly.

+ Detection results:

PASSED!

* Security suggestion:
no.

tx.origin Authentication

« Description:
Solidity has a global variable, tx.origin which traverses the entire call stack and returns the address of the
account that originally sent the call (or transaction). Using this variable for authentication in smart contracts
leaves the contract vulnerable to a phishing-like attack.

+ Detection results:

PASSED!

« Security suggestion:
no.

Permission restrictions

« Description:
Contract managers who can control liquidity or pledge pools, etc., or impose unreasonable restrictions on other

19/20

0X202106090006

users.
« Detection results:

PASSED'!

« Security suggestion:

no.

20/20

/Armors Labs

armors.io

contact@armors.io

