
Oh!Finance
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: June 15th, 2021 - June 30th, 2021

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) USE OF TX.ORIGIN - MEDIUM 13

Description 13

Code Location 13

Risk Level 13

Recommendation 14

Remediation Plan 14

3.2 (HAL-02) UNCHECKED TRANSFER - LOW 15

Description 15

Code Location 15

Risk Level 16

Recommendation 16

Remediation Plan 16

3.3 (HAL-03) USE OF BLOCK.TIMESTAMP - LOW 17

Description 17

1

Code Location 17

Risk Level 18

Recommendation 18

Remediation Plan 18

3.4 (HAL-04) MISSING EVENTS EMITTING - INFORMATIONAL 19

Description 19

Risk Level 19

Recommendation 19

Remediation Plan 19

3.5 (HAL-05) MISSING RE-ENTRANCY PROTECTION - INFORMATIONAL 20

Description 20

Code Location 20

Risk Level 21

Recommendation 21

Remediation Plan 21

3.6 (HAL-06) IMPRECISION OF A CONSTANT - INFORMATIONAL 22

Description 22

Code Location 22

Recommendation 22

Remediation Plan 23

3.7 (HAL-07) POSSIBLE MISUSE OF PUBLIC FUNCTIONS - INFORMATIONAL

24

Description 24

Code Location 24

Risk Level 24

Recommendation 25

2

Remediation Plan 25

3.8 (HAL-08) LACK OF LIQUIDITY LOSS PROTECTION - INFORMATIONAL 26

Description 26

Code Location 26

Recommendation 26

4 MANUAL TESTING 28

4.1 Testing if contracts could be reinitialized again. 30

4.2 Testing For Function Clashing. 32

4.3 Testing For Roles And Privilege. 33

4.4 Testing For Burning More Tokens Than owned. 35

4.5 Testing Deposit with Signature 36

5 AUTOMATED TESTING 37

5.1 STATIC ANALYSIS REPORT 38

Description 38

Results 38

5.2 AUTOMATED SECURITY SCAN 40

MYTHX 40

Results 40

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 06/23/2021 Gabi Urrutia

0.2 Document Edits 06/24/2021 Oussama Amri

1.0 Document Edits 06/30/2021 Gabi Urrutia

1.1 Remediation Plan 08/13/2021 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Oussama Amri Halborn Oussama.Amri@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Oussama.Amri@halborn.com

5

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Oh!Finance is a Decentralized Finance (DeFi) offering optimized yield-

generating products, focusing on reducing risk and increasing volume

exposure.

Oh!Finance engaged Halborn to conduct a security assessment on their

smart contracts beginning on June 15th, 2021 and ending June 30th, 2021.

The security assessment was scoped to smart contracts implementing the

core protocol and the staking mechanism, and an audit of the security

risk and implications regarding the changes introduced by the development

team at Oh!Finance prior to its production release shortly following the

assessments deadline.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and assigned

two full time security engineers to audit the security of the smart

contracts. The engineers are blockchain and smart contract security

experts with advanced penetration testing, smart-contract hacking, and

deep knowledge of multiple blockchain protocols.

The purpose of this audit to achieve the following:

• Ensure that smart contract functions are intended.

• Identify potential security issues with the smart contracts.

Though this security audit’s outcome is satisfactory, only the most

essential aspects were tested and verified to achieve objectives and

deliverables set in the scope due to time and resource constraints. It

is essential to note the use of the best practices for secure smart-

contract development.

6

EX
EC

UT
IV

E
OV

ER
VI

EW

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard to

the scope of the smart contract audit. While manual testing is recommended

to uncover flaws in logic, process,and implementation; automated testing

techniques help enhance coverage of smart contracts and can quickly

identify items that do not follow security best practices. The following

phases and associated tools were used throughout the term of the audit:

• Research into architecture and purpose.

• Smart Contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/func-

tions(solgraph)

• Manual Assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes (Hardhat and manual deployments on Ganache)

• Manual testing with custom Javascript.

• Static Analysis of security for scoped contract, and imported func-

tions.(Slither)

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Testnet deployment (Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security in-

cident, and the IMPACT should an incident occur. This framework works for

communicating the characteristics and impacts of technology vulnerabili-

ties. It’s quantitative model ensures repeatable and accurate measurement

while enabling users to see the underlying vulnerability characteristics

that was used to generate the Risk scores. For every vulnerability, a

risk level will be calculated on a scale of 5 to 1 with 5 being the

highest likelihood or impact.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the smart contracts:

Oh!Finance:

- /contracts/bank/OhBank.sol

- /contracts/strategies/aave/OhAaveV2Strategy.sol

- /contracts/strategies/compound/OhCompoundStrategy.sol

- /contracts/strategies/curve/OhCurve3PoolStrategy.sol

Commit ID: aaa5e9eff8bf6f459f34d8c9e251af2254e078a4

Fixed Commit ID: 240a1a261b7f3a9e11031f7a078557073bc7b07d

OUT-OF-SCOPE:

Other smart contracts in the repository, external libraries and economics

attacks.

However, if any economic issue is found, it will be marked as an IN-

FORMATIONAL. This report identified several items that are economic in

nature, (such as the way Liquidity can be accessed by owners) but may not

be considered vulnerabilities in the context for this scope.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 2 5

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)
(HAL-03)

(HAL-08)

(HAL-04)
(HAL-05)
(HAL-06)
(HAL-07)

10

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - USE OF TX.ORIGIN Medium Low

HAL02 - UNCHECKED TRANSFER Low SOLVED - 08/04/2021

HAL03 - USE OF BLOCK.TIMESTAMP Low NOT APPLICABLE

HAL04 - MISSING EVENTS EMITTING Informational SOLVED - 08/06/2021

HAL05 - MISSING RE-ENTRANCY
PROTECTION

Informational RISK ACCEPTED

HAL06 - IMPRECISION OF A CONSTANT Informational ACKNOWLEDGED

HAL07 - POSSIBLE MISUSE OF PUBLIC
FUNCTIONS

Informational ACKNOWLEDGED

HAL08 - LACK OF LIQUIDITY LOSS
PROTECTION

Informational RISK ACCEPTED

11

EX
EC

UT
IV

E
OV

ER
VI

EW

12

FINDINGS & TECH
DETAILS

3.1 (HAL-01) USE OF TX.ORIGIN -
MEDIUM

Description:

OhBank.sol contract use tx.origin so that defense modifier can be called

by anybody. It is recommended that you use msg.sender instead of tx.origin

because if a transaction is made to a malicious wallet, when you check

it you will have the origin address and you will not be able to know the

address of the malicious wallet. Nevertheless, the use of tx.origin is

semi-legitimized for recording who calls the contract most. Furthermore,

tx.origin could be used to prevent an address from interacting with your

contract because the owner of the address cannot use the contract as an

intermediary to circumvent your blocking. Finally, it is important to

remark that the use of tx.origin will be deprecated.

Code Location:

OhBank.sol Line #37

Listing 1: OhBank.sol (Lines 38)

37 modifier defense {

38 require(msg.sender == tx.origin || IManager(manager ()).

whitelisted(msg.sender), "Bank: Only EOA or whitelisted

");

39 _;

40 }

Risk Level:

Likelihood - 3

Impact - 4

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended not to use tx.origin because a malicious wallet could

receive funds and cannot be tracked. However, its use is semi-legitimate

in some cases with caution.

Remediation Plan:

This modifier’s purpose is to prevent smart contracts from interacting

with

the Bank contract (i.e. malicious attacks). The only time that tx.origin

== msg.sender is when the top-level caller is a user, not a contract.

The OpenZeppelin implementation of the Address

library is not sufficient for identifying whether an address is NOT a

contract, therefore this is the only form of logic currently available

in Solidity that accurately blocks contract interaction. Contracts are

upgradeable and logic can be updated if EIP-3074 is passed and implemented.

The issue is reclassified to LOW.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) UNCHECKED TRANSFER -
LOW

Description:

The contracts OhBank.sol has _deposit method and in this method,

transferFrom() is being called without any implementing checks on the

return value. Several tokens do not revert in case of failure and return

false which may allow an attacker to deposit for free.

Code Location:

Listing 2: OhBank.sol (Lines 225)

212 // deposit underlying to receive shares

213 function _deposit(

214 uint256 amount ,

215 address sender ,

216 address recipient

217) internal {

218 require(totalStrategies () > 0, "Bank: No Strategies");

219 require(amount > 0, "Bank: Invalid Deposit");

220

221 uint256 totalSupply = totalSupply ();

222 uint256 mintAmount = totalSupply == 0 ? amount : amount.

mul(totalSupply).div(virtualBalance ());

223

224 _mint(recipient , mintAmount);

225 IERC20(underlying ()).transferFrom(sender , address(this),

amount);

226

227 emit Deposit(recipient , amount);

228 }

229

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

Although using SafeERC20 for IERC20; is used we recommend using safe-

TransferFrom() instead of the transferFrom() function.

Remediation Plan:

SOLVED: Updated OhBank.sol to use the OpenZeppelin SafeERC20.

safeTransferFrom method. This method will cause any ERC20 to revert in

case of failure. Fixed in coomit ID: d7ef893c0377d347b9730e724d70b5c7e7b6f4a1

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) USE OF
BLOCK.TIMESTAMP - LOW

Description:

During a manual static review, the tester noticed the use of block

.timestamp in OhAaveV2Strategy.sol contract. The contract developers

should be aware that this does not mean current time. Miners can influence

the value of block.timestamp to perform Maximal Extractable Value (MEV)

attacks. The use of now creates a risk that time manipulation can be

performed to manipulate price oracles. Miners can modify the timestamp

by up to 900 seconds.

Code Location:

Listing 3: OhAaveV2Strategy.sol (Lines 92,99)

87 /// @dev Compound stkAAVE rewards on a alternating cooldown

schedule

88 function _compound () internal {

89 uint256 currentCooldown = rewardCooldown ();

90

91 // if the current cooldown has passed

92 if (block.timestamp > currentCooldown) {

93 // save state variables

94 uint256 balance = stakedBalance ();

95 address staked = stakedToken ();

96 uint256 expiration = currentCooldown.add(

unstakingWindow(staked));

97

98 // if we have stkAAVE and the unstaking window hasn't

passed

99 if (balance > 0 && block.timestamp < expiration) {

100 // redeem all available AAVE

101 redeem(staked , balance);

102

103 // validate we received AAVE

104 uint256 amount = rewardBalance ();

105 if (amount > 0) {

106 // liquidate for underlying

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

107 liquidate(reward (), underlying (), amount);

108 }

109 }

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

Use block.number instead of block.timestamp to reduce the risk of MEV

attacks. Check if the timescale of the project occurs across years, days

and months rather than seconds. If possible, it is recommended to use

Oracles.

Remediation Plan:

NOT APPLICABLE: The AaveV2Strategy.sol file only deals with time periods

greater than 48 hours. There is a 480 hour waiting period that must first

pass to convert stkAAVE into AAVE. Then there is a maximum 48 hour window

in which the conversion can take place. Timeframes of this length should

not be affected by miner manipulation.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) MISSING EVENTS
EMITTING - INFORMATIONAL

Description:

We observed that some critical functionality are missing emitting any

events like exit and exitAll functions, the governance would probably

want to monitor these operations

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider emitting an event when calling exit or exitAll function.

Listing 4

1 event exit(address strategy , uint256 amount);

2 event exitAll(address strategy)

Remediation Plan:

SOLVED: Added event emitters for the recommended exit and exitAll methods.

Added additional events where appropriate. Fixed in commit ID: 240

a1a261b7f3a9e11031f7a078557073bc7b07d

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) MISSING RE-ENTRANCY
PROTECTION - INFORMATIONAL

Description:

To protect against cross-function reentrancy attacks, it may be necessary

to use a mutex. By using this lock, an attacker can no longer exploit

the withdraw function with a recursive call. OpenZeppelin has it’s own

mutex implementation called ReentrancyGuard which provides a modifier to

any function called nonReentrant that guards the function with a mutex

against reentrancy attacks.

Code Location:

Listing 5: OhBank.sol (Lines 197)

196 // withdraw an amount of shares for underlying

197 function withdraw(uint256 shares) external override defense {

198 _withdraw(msg.sender , shares);

199 }

200

Listing 6: OhCompoundStrategy.sol (Lines 87)

86 // withdraw all underlying by redeem all cTokens

87 function withdrawAll () external override onlyBank {

88 uint256 invested = investedBalance ();

89 _withdraw(msg.sender , invested);

90 }

91

Listing 7: OhAaveV2Strategy.sol (Lines 76)

75 /// @notice

76 function withdraw(uint256 amount) external override onlyBank

returns (uint256) {

77 uint256 withdrawn = _withdraw(msg.sender , amount);

78 return withdrawn;

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

79 }

80

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

In the OhBank.sol , OhCompoundStrategy.sol , OhCurve3PoolStrategy.sol and

OhAaveV2Strategy.sol contract, function like withdraw() and withdrawAll

(), are missing nonReentrant guard. Use the nonReentrant modifier to

avoid introducing future vulnerabilities.

Remediation Plan:

RISK ACCEPTED: Oh!Finance team claims that no changes are necessary.

The defense modifier prevents re-entrancy attacks. Since only top-level

users can call these functions, it is not possible to execute any code

on callbacks.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) IMPRECISION OF A
CONSTANT - INFORMATIONAL

Description:

During the audit, It has been observed that integers with scientific

notations are directly compared with function arguments.

Code Location:

OhCompoundStrategy.sol Lines #56,100,101

OhCurve3PoolStrategy.sol Lines #120,123,126

Listing 8: OhCurve3PoolStrategy.sol (Lines)

120 uint256 supplyShare = amount.mul(1e18).div(invested);

121

122 // find amount to unstake in 3CRV

123 uint256 unstakeAmount = Math.min(staked , supplyShare.mul(

staked).div(1e18));

124

125 // find amount to redeem in underlying

126 uint256 redeemAmount = Math.min(invested , supplyShare.mul(

invested).div(1e18));

Recommendation:

It is recommended to define precision values as a constant value at the

beginning of contract.

Listing 9

1 uint constant PRECISION = 1e18;

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

ACKNOWLEDGED: Oh!Finance team claims that no changes are necessary.

Declaring constant variables in proxy contracts introduces upgrade risks

and usage of the memory stack is cheaper than referencing stored vari-

ables.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) POSSIBLE MISUSE OF
PUBLIC FUNCTIONS - INFORMATIONAL

Description:

In public functions, array arguments are immediately copied to memory,

while external functions can read directly from calldata. Reading call-

data is cheaper than memory allocation. Public functions need to write

the arguments to memory because public functions may be called internally.

Internal calls are passed internally by pointers to memory. Thus, the

function expects its arguments being located in memory when the compiler

generates the code for an internal function.

Code Location:

Listing 10: OhBank.sol (Lines 118)

118 function virtualPrice () public view override returns (uint256)

{

119 uint256 totalSupply = totalSupply ();

120 uint256 unit = 10** decimals ();

121 return totalSupply == 0 ? unit : virtualBalance ().mul(unit

).div(totalSupply);

122 }

Listing 11: OhAaveV2Strategy.sol (Lines 56)

56 function investedBalance () public view override returns (

uint256) {

57 return derivativeBalance ();

58 }

Risk Level:

Likelihood - 1

Impact - 1

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Consider declaring external variables instead of public variables. A

best practice is to use external if expecting a function to only be

called externally and public if called internally. Public functions are

always accessible, but external functions are only available to external

callers.

Remediation Plan:

ACKNOWLEDGED: Oh!Finance team claims that functions were intentionally

left public. While the Bank and Strategy contracts have upgradeable

logic, proxy implementation prevents changing function signatures.

Leaving functions marked as public adds the least restrictions for

future upgrades. (e.g. We mark virtualPrice() as external and later

want to push an upgrade that uses virtualPrice() in a calculation, this

cannot be done without duplicating code).

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) LACK OF LIQUIDITY LOSS
PROTECTION - INFORMATIONAL

Description:

The exit and exitAll functions allows the bank owner to transfer the

deposited amounts to their account. These situations are often enabled

because a single bank role, or a liquidity address has access to remove

all the TVL (Total Value Locked) through a withdraw or transfer function.

While sometimes, the developer or owner does not intend to do this

malicious act, the risk still exists if the private key is stolen since

there is nothing preventing the key-holder from calling the withdraw.

Code Location:

Listing 12: OhBank.sol (Lines)

120 /// @notice Exit and withdraw a given amount from a strategy

121 /// @param strategy The address of the Strategy to exit

122 function exit(address strategy , uint256 amount) external

override onlyAuthorized {

123 IStrategy(strategy).withdraw(amount);

124 }

125

126 /// @notice Exit and withdraw all underlying from a given

strategy

127 function exitAll(address strategy) external override

onlyAuthorized {

128 IStrategy(strategy).withdrawAll ();

129 }

Recommendation:

Those functions allows the banks of the system to perform withdraw all

amounts from strategy addresses. The bank should be limited to the minimum

operations possible that allows pool management. Oh!Finance does only use

the onlyBank and onlyAuthorized modifier , the bank role check to perform

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

critical actions such as enabling transfers on the strategies. However,

these functionalities should be split between multiple role based users

with multi-signature wallets for each one. Also, It is recommended to

add timelock or pause/unpause functionality on the withdraw progress.

The latency introduced by time locks can act as a preview for how things

might work under the unexpected situations.

Remediation Plan

RISK ACCEPTED Oh!Finance team claims that no change are necessary. The

onlyAuthorized modifier allows either the Manager or Governance address

to perform a Strategy exit. Strategy exits do not allow either of these

addresses to withdraw user funds, only the withdrawal from a specific

Strategy to the Bank address. Funds then sit on the Bank contract and

can be withdrawn by burning Bank tokens as usual. The Manager address

will always be a contract. During the initial deployment, the Governance

address will be set to the deployer, but will then be updated to a DAO

Timelock Contract. These functions were written to facilitate normal

interactions between the Banks and Strategies, allow any upgrades, and

allow any emergency actions to be taken by Governance in the case of an

underlying protocol failure.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

28

MANUAL TESTING

During the manual testing multiple questions where considered while

evaluation each of the defined functions:

• Can it be re-called changing admin/roles and permissions?

• Can somehow an external controlled contract call again the function

during the execution of it? (Re-entrancy)

• Can it be called twice in the same block and cause issues?

• Do we control sensitive or vulnerable parameters?

• Does the function check for boundaries on the parameters and internal

values? Bigger than zero or equal? Argument count, array sizes,

integer truncation . . .

• Are the function parameters and variables controlled by external

contracts?

• Can we re-initialize contracts?

• Can we withdraw more than allowed?

29

MA
NU

AL
TE

ST
IN

G

4.1 Testing if contracts could be
reinitialized again.

Custom tests are useful for developers to check if functions and

permissions work correctly. Furthermore, they are also useful for

security auditors to perform security tests behaving like a malicious

user. Then, auditors manually manipulated inputs to check the security

in the smart contracts.

Contracts are deployed using a proxy, it’s essential to test if the

initializer modifier exists and prevent deploying the contract again and

possibly gain ownership to the contract by attackers.

s OhBank.sol , OhAaveV2Strategy.sol , OhCompoundStrategy.sol and

OhCurve3PoolStrategy.sol are using the initializer modifier from

OpenZeppelin. Moreover , manually redeploying again will give revert.

Listing 13: OhBank.sol (Lines 43,59)

42 /// @notice Initialize the Bank Logic

43 constructor () initializer {

44 assert(registry () == address (0));

45 assert(underlying () == address (0));

46 }

47

48 /// @notice Initialize the Bank Proxy

49 /// @param name_ The name of the Bank Token

50 /// @param symbol_ The symbol of the Bank Token

51 /// @param registry_ Rhe address of the registry

52 /// @param underlying_ Rhe address of the underlying token

that is deposited

53 /// @dev Should be called when deploying the proxy contract

54 function initializeBank(

55 string memory name_ ,

56 string memory symbol_ ,

57 address registry_ ,

58 address underlying_

59) public initializer {

60

30

MA
NU

AL
TE

ST
IN

G

Initialization Check

31

MA
NU

AL
TE

ST
IN

G

4.2 Testing For Function Clashing.

The DAPP is using proxy to allow quick bug-fixing and adding new features

on top of already deployed contracts. it’s essential to know in such

design it’s possible to conceal malicious code that can be very difficult

to spot.

Function clashing happens when any function in the Proxy contract whose

selector matches with one in the implementation contract will be called

directly, completely skipping the implementation code, function selector

is the first four bytes of the sha3 of the function signature.

therefore we used slither plugin slither-check-upgradeability to ensure

that there is no such clashing between the contracts in scope and the

proxy contract.

Function Clashing Test

32

MA
NU

AL
TE

ST
IN

G

4.3 Testing For Roles And Privilege.

In this test, it is tried to call critical functions such as exit() and

exitAll() to withdraw all funds from strategies. It is observed that

access control is correctly implemented and most critical function was

either internal or can be only called by Banks or Governors.

Exit/ExitAll Function Privilege Check

Pause/Unpause Function Privilege Check

33

MA
NU

AL
TE

ST
IN

G

Strategy Functions Privilege Check

34

MA
NU

AL
TE

ST
IN

G

4.4 Testing For Burning More Tokens
Than owned.

In this test, it is tried to burn more tokens than a user owned through the

withdraw function, there were no checks to ensure the balance of the owner

before calling the _burn method, however the _burn will automatically

revert if the amount to be burned is more than his balance.

we still recommend adding a require statement to ensure the user has

enough balance before calling the burn function to optimize gas usage.

Withdraw Testing

35

MA
NU

AL
TE

ST
IN

G

4.5 Testing Deposit with Signature

During the test, depositWithPermit function is evaluated. The signature

is created with another address. To sum up, The manipulation was not

successful on the contract.

Test results can be seen from the below.

36

MA
NU

AL
TE

ST
IN

G

37

AUTOMATED TESTING

5.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance coverage of certain

areas of the scoped contract. Among the tools used was Slither, a Solidity

static analysis framework. After Halborn verified all the contracts in the

repository and was able to compile them correctly into their abi and binary

formats. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Results:

- The unchecked transfer issue on OhBank.sol file is already reported

above

38

AU
TO

MA
TE

D
TE

ST
IN

G

- As recommended above we recommend adding the nonReentrant guard to

avoid introducing future vulnerabilities.

39

AU
TO

MA
TE

D
TE

ST
IN

G

5.2 AUTOMATED SECURITY SCAN

MYTHX:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruit on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the testers machine and sent the compiled results to the analyzers

to locate any vulnerabilities. Only security-related findings are shown

below.

Results:

OhBank Mythx Output

OhAaveV2Strategy Mythx Output

40

AU
TO

MA
TE

D
TE

ST
IN

G

OhCompoundStrategy Mythx Output

OhCurve3PoolStrategy Mythx Output

All relevant findings were founded in the manual code review.

41

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Recommendation

	MANUAL TESTING
	Testing if contracts could be reinitialized again.
	Testing For Function Clashing.
	Testing For Roles And Privilege.
	Testing For Burning More Tokens Than owned.
	Testing Deposit with Signature

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Results

	AUTOMATED SECURITY SCAN
	MYTHX
	Results

